Search results for "Segmental patterning"
showing 3 items of 3 documents
The Drosophila Hox gene Ultrabithorax acts both in muscles and motoneurons to orchestrate formation of specific neuromuscular connections
2016
Hox genes are known to specify motoneuron pools in the developing vertebrate spinal cord and to control motoneuronal targeting in several species. However, the mechanisms controlling axial diversification of muscle innervation patterns are still largely unknown. We present data showing that the Drosophila Hox gene Ultrabithorax (Ubx) acts in the late embryo to establish target specificity of ventrally projecting RP motoneurons. In abdominal segments A2 to A7, RP motoneurons innervate the ventrolateral muscles VL1-4, with VL1 and VL2 being innervated in a Wnt4-dependent manner. In Ubx mutants, these motoneurons fail to make correct contacts with muscle VL1, a phenotype partially resembling t…
Gene expression profiles uncover individual identities of gnathal neuroblasts and serial homologies in the embryonic CNS of Drosophila.
2015
The numbers and types of progeny cells generated by neural stem cells in the developing CNS are adapted to its region-specific functional requirements. In Drosophila, segmental units of the CNS develop from well-defined patterns of neuroblasts. Here we constructed comprehensive neuroblast maps for the three gnathal head segments. Based on the spatiotemporal pattern of neuroblast formation and the expression profiles of 46 marker genes (41 transcription factors), each neuroblast can be uniquely identified. Compared with the thoracic ground state, neuroblast numbers are progressively reduced in labial, maxillary and mandibular segments due to smaller sizes of neuroectodermal anlagen and, part…
Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region
2013
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several proge…